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Abstract Membrane protein is an important composition

of cell membrane. Given a membrane protein sequence,

how can we identify its type(s) is very important because

the type keeps a close correlation with its functions.

According to previous studies, membrane protein can be

divided into the following eight types: single-pass type I,

single-pass type II, single-pass type III, single-pass type

IV, multipass, lipid-anchor, GPI-anchor, peripheral mem-

brane protein. With the avalanche of newly found protein

sequences in the post-genomic age, it is urgent to develop

an automatic and effective computational method to rapid

and reliable prediction of the types of membrane proteins.

At present, most of the existing methods were based on the

assumption that one membrane protein only belongs to one

type. Actually, a membrane protein may simultaneously

exist at two or more different functional types. In this

study, a new method by hybridizing the pseudo amino acid

composition with multi-label algorithm called LIFT (multi-

label learning with label-specific features) was proposed to

predict the functional types both singleplex and multiplex

animal membrane proteins. Experimental result on a

stringent benchmark dataset of membrane proteins by

jackknife test show that the absolute-true obtained was

0.6342, indicating that our approach is quite promising. It

may become a useful high-through tool, or at least play a

complementary role to the existing predictors in identifying

functional types of membrane proteins.

Keywords Membrane protein � Jackknife test � Absolute-

true � Multi-label algorithm

Introduction

As the main undertaker of the membrane function, mem-

brane protein plays an essential role in various biochemical

process such as transmembrane transport, energy exchange,

signal transduction, and so on (Pu et al. 2007). Almost,

30 % encoded proteins in nuclear genome are membrane

proteins. In addition, membrane protein constitutes 60 %

of drug target, which were crucial to understand the

mechanism of cellular activities as well as new drug dis-

cover or design. According to the report, the function of a

membrane protein is closely correlated with its type(s). In

the post-genomic era, the number of newly found protein

sequences has been rapidly increasing, such as the number

of protein sequence entries was only 3939 in Swiss-Prot in

1986 (Boeckmann et al. 2003), however, the number

jumped to 54790250 according to the version released on

19-March-2014 at http://www.uniprot.org/, which is more

10000 times than in 1986. The gap between newly found

proteins and the information of functional types is

becoming increasingly wide. Although the functional type

of a membrane protein may be determined by carrying out

various biochemical experiments, it will be time-consum-

ing and costly. Therefore, to bridge such a gap, it is urgent

to develop an automatic and effective computational

method to identify the types of membrane protein.

According to previous studies (Chou and Shen 2007;

Huang and Yuan 2013), membrane proteins can be mainly

divided into the following eight types: single-pass type I,

single-pass type II, single-pass type III, single-pass type

IV, multipass, lipid-anchor, GPI-anchor, peripheral mem-

brane protein.

In the past several years, many efforts have been made

in identifying the functional types of membrane proteins

based on the sequence information, such as Cai et al.

H.-L. Zou (&)

Computer Department, Jing-De-Zhen Ceramic Institute,

Jing-De-Zhen 333046, China

e-mail: hongliangzou@126.com

123

J Membrane Biol (2014) 247:1141–1148

DOI 10.1007/s00232-014-9708-2

http://www.uniprot.org/


(2004) predicting membrane protein types using amino

acid composition (AAC) with support vector machine

(SVM); Hayat and Khan (2012) by hybridizing the split

amino acid composition (SAAC) and seven physicochem-

ical properties of protein with SVM to predict membrane

protein types; Chou and Shen (2007) using Pse-PSSM to

predict eight membrane types with OET-KNN, and

obtained overall success rate 85 % by jackknife test, and

many others.

Although those methods aforementioned each have their

own advantages and did play an important role in stimu-

lating the development of this area (Xiao et al. 2013), they

were focused on identifying one of its subtypes, without

considering various possible different functional types of

membrane protein. In fact, many membrane proteins have

two or more functional types or different functions.

Membrane proteins with multiple types or dynamic feature

of this kind are particularly interesting, because they may

have some unique biological functions worthy of our spe-

cial notice (Glory and Murphy 2007; Smith 2008; Wang

and Li 2012).

In this study, to better reflect the characteristics of mul-

tiplex proteins, a new predictor has been developed that can

be utilized to deal with the systems containing both single-

plex and multiplex membrane proteins by introducing a

powerful multi-label learning algorithm called LIFT which

exploits correlations between the types and by hybridizing

the amino acid composition (AAC), CTD (composition,

translation, distribution), and EBGW(encoding based on

grouped weight) information (Wang and Li 2012).

According to a comprehensive review (Chou 2011), in

order to establish a useful and powerful predictor for a

biological system based on sequence information, the fol-

lowing procedures should be considered: (1) construct or

choose a valid dataset to train and test the predictor; (2)

using an effective mathematical expression to formulate

the protein sequence, which can truly reflect the intrinsic

correlation with the target to be predicted; (3) develop or

introduce a powerful algorithm to conduct the prediction

processes; (4) properly perform a cross-validation test to

objectively evaluate the anticipated accuracy.

Materials

To establish a high quality benchmark dataset for developing

a predictor to identify the functional types of membrane

proteins, the sequences were collected from UniProtKB/

Swiss-Prot release on 2014_03 at http://www.uniprot.org/

according to the following steps (Lin et al. 2013).

Step 1 Only these protein sequences annotation of

‘‘metazoa’’ were collected.

Step 2 Those proteins belonging to human beings were

removed.

Step 3 Those proteins annotation with ‘‘fragment’’ were

removed; meanwhile, those proteins with the

length of sequence less than 50 residues were

also excluded, in case of the influence of the

fragment.

Step 4 Sequences annotated with ambiguous or uncer-

tain terms, such as ‘‘potential,’’ ‘‘probable,’’

‘‘probably,’’ ‘‘maybe,’’ or ‘‘by similarity,’’ were

removed for further consideration.

Step 5 In order to reduce the influence of the redun-

dancy and homology bias, a software called

‘‘CD-HIT’’ was used to remove these proteins

with more than 40 % pairwise sequence identify

to any others in the same subset except for the

subset of ‘‘single-pass III’’, because there is few

sequence in the subset, if not so, the data in the

subset may be too few to have statistically

significant.

Finally, we obtained 2,559 different animal membrane

protein sequences covered in eight functional types, those

proteins form the benchmark dataset S for the current

study, it can be formulated as

S ¼ S1 [ S2 [ S3 [ S4 [ S5 [ S6 [ S7 [ S8; ð1Þ

where S1 represents the functional type of ‘‘single-pass type

I,’’ S2 for ‘‘single-pass type II,’’ and so forth. The symbol

[represents the ‘‘union’’ in the set theory. For convenience,

the number varying from 1 to 8 was used to represent the 8

subsets. The detailed information about the benchmark

dataset was listed in Table 1.

Among the 2,559 different animal membrane proteins,

2,473 belong to one functional type, 82 to two types, 4 to

three types, none in four or more functional types.

Table 1 The information about the benchmark dataset S constructed

in this study

Subset Type Number of

membrane proteins

1 Single-pass type I 519

2 Single-pass type II 166

3 Single-pass type III 28

4 Single-pass type IV 33

5 Multipass 1,029

6 Lipid-anchor 191

7 GPI-anchor 81

8 Peripheral 602

Total number of

virtual proteins

2,649

Total number of

different proteins

2,559
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Because some proteins may simultaneously have two or

more functional types, the concept of ‘‘virtual protein’’ (Lin

et al. 2013; Xiao et al. 2013) was introduced, that is if a

protein coexist two different types, it will be counted as

two virtual proteins; if coexist three different types, it will

be counted as three virtual proteins, and so forth. Thus, the

number of total virtual proteins can be calculated by the

following equation:

NðvirÞ ¼ NðseqÞ þ
XM

m¼1

ðm� 1ÞNðmÞ; ð2Þ

where N(vir) is the number of total virtual membrane

proteins, N(seq) is the number of different membrane

protein sequences, N(1) the number of membrane proteins

with one functional type, N(2) the number of membrane

proteins with two different functional types, and so forth;

and M is the number of total functional types investigated.

Substituting the afore mentioned data in Eq. (2), we

obtained

NðvirÞ ¼ NðseqÞ þ ð1� 1Þ � 2473þ ð2� 1Þ � 82

þ ð3� 1Þ � 4

¼ 2559þ 82þ 8 ¼ 2649;

ð3Þ

meaning that the total number of virtual membrane proteins

is 2,649, which is actually also the sum of the protein

numbers for the 8 subsets listed in Table 1. As we can see

from Eq. (2) and Eq. (3), the number of total virtual pro-

teins is generally greater than that of total different protein

sequences. When and only when, all of the proteins have a

single-type, can the two be the same.

Methods

In order to develop a powerful predictor for identifying

membrane proteins functional types based on the sequence

information, one of the first important things is to formu-

late the proteins samples with an effective mathematical

expression that can truly reflect the intrinsic correlation

with the target to be investigated (Chou 2011; Xiao et al.

2013). However, it is by no means a trivial and easy job to

realize this because this kind of correlation is usually

deeply hidden or ‘‘buried’’ into piles of complicated

sequences (Lin et al. 2013; Xiao et al. 2013).

The most straightforward method to formulate the sample

of a query protein sequence P with L-amino acids is to use its

entire amino acid sequence, it can be expressed by

P ¼ R1R2R3. . .RL; ð4Þ

where R1 represent the first residue in the protein sequence,

R2 the second residue,…, RL the L–th residue, each of them

belongs to one of the 20 native amino acids. To identify its

functional type(s), the sequence similarity-search-based

tools, such as BLAST (Altschul 1997; Wootton and Fed-

erhen 1993) was utilized to search the protein database for

those proteins that have high sequence similarity to the

query protein P. Subsequently, the function annotations of

the targeted proteins thus found were used to infer the

function for the query protein P. However, this kind of

straightforward sequential model, although quite intuitive

and able to contain the entire sequence information of a

protein sample, failed to work when the query protein P did

not have any significant sequence similarity to any attri-

bute-known proteins (Chou and Shen 2007; Xiao et al.

2013).

To overcome the above difficulty, which is inherent to

the sequence model, various non-sequential or discrete

models were introduced to represent the sample of a pro-

tein with a series of discrete numbers, which in hope to

enhance the prediction power (Xiao et al. 2013).

Among the various discrete models, the simplest one is

to represent the sample of a protein with its amino acid

composition or AAC (Nakashima et al., 1986). According

to the AAC-discrete model, the protein P can be formulated

by (Chou 1999; Chou 1995)

P ¼ ½f1; f2; . . .; f20�T ; ð5Þ

where fi (i = 1,2,…,20) are the normalized occurrence

frequencies of the 20 native amino acids in protein P

according to the alphabetic order, and T represents the

transposing operator. The AAC-discrete model was widely

utilized in prediction protein attributes. However, as we

can see from Eq. (5), if only AAC model was used to

represent the protein P, all of its sequence-order effects

would be lost, and hence might considerably limit the

prediction quality.

In order to avoid completely losing the sequence-order

information, the pseudo amino acid composition (PseAAC,

also called ‘‘Chou’s PseAAC’’ (Lin and Lapointe 2013))

was proposed to represent the protein sample by Chou

(2001). After that, the pseudo amino acid composition was

widely used in bioinformatics, proteomics and system

biology, such as predicting G-Protein-Coupled Receptor

classes (Chou 2005; Xiao et al. 2009), prediction subcel-

lular location of proteins (Chou et al. 2011; Gao et al. 2005;

Shen and Chou 2007b; Xiao et al. 2005), subnuclear

location of proteins prediction (Jiang et al. 2008; Li and Li

2008; Mundra et al., 2007; Shen and Chou, 2005), pre-

dicting GABA(A) receptor proteins (Mohabatkar et al.

2011), predicting enzyme family and sub-family classes

(Qiu et al. 2010; Shen and Chou 2007a; Wang et al. 2010),

identifying the functional types of antimicrobial peptides

(Khosravian et al. 2013; Xiao et al. 2013), predicting

subcellular location of apoptosis proteins (Chen and Li

2007; Jian et al. 2008; Lin et al. 2009; Saravanan and
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Lakshmi 2013; Zhang et al. 2006; Zhou and Doctor 2003),

among many others.

According to previous studies, the general form of

PseAAC for a protein P is formulated by (Chou 2001)

P ¼ n1; n2; . . .; nX½ �T ; ð6Þ

where the subscript X is an integer, and its value as well as

the components n1; n2; . . . will depend on how to extract

the desired information from the amino acid sequence of P.

In the following, we will describe in detail the process of

how to define the elements in Eq. (6).

CTD of Physiochemical Descriptors

The 20 native amino acids can be divided into 3 groups

according to the following eight different physiochemical

properties (as show in Table 2) (Hua and Sun 2001; Nanni

and Lumini 2006; Saravanan and Lakshmi 2013; Zou et al.

2013): secondary structure, solvent accessibility, normalized

van der waals volume, hydrophobicity, charge, polarizabil-

ity, polarity, surface tension. Three descriptors, composition

(CS), transition (Txy), and distribution (DS), are utilized to

describe the global composition of each of these properties,

they can be calculated using the following equations:

CS ¼ ns=L S ¼ 1; 2; 3ð Þ; ð7Þ

where ns represent the number of s in the encoded

sequence, and L is the length of the protein sequence.

Txy ¼
nxy þ nyx

L� 1
xy ¼ 12½ �; 13½ �; 23½ �; ð8Þ

where nxy is the number of dipeptide encoded as ‘‘xy’’ and

‘‘yx’’, respectively.

There are totally five distributions that were assigned,

position percentage of first, 25, 50, 75, and 100 % residue

occurrence in the entire sequence. Therefore, the distribu-

tion Dx for the descriptor Ei is calculated as below:

Ei1Dx ¼
P1

L
ð9Þ

Ei25Dx ¼
P25

L
ð10Þ

Ei50Dx ¼
P50

L
ð11Þ

Ei75Dx ¼
P75

L
ð12Þ

Ei100Dx ¼
P100

L
i ¼ 1; 2; . . .; 8; x ¼ 1; 2; 3ð Þ; ð13Þ

where P1, P25, P50, P75, and P100 were the position of first

occurrence of x, position of 25, 50, 75, and 100 % occur-

rence of x, respectively. The values of composition,

translation, and distribution were calculated for all the

eight descriptors, and the corresponding feature vector

CTD was expressed as

CTD ¼ ½Cis½1;2;3�; Tixy½12;13;23�;Ei½1;2;3;4;5�� i ¼ 1; 2; . . .; 8ð Þ
ð14Þ

Now, let us give an example to explain the CTD in detail in

the following (Cai et al. 2003). Assuming that there is a

protein sequence, its amino acid composition is

AEAAAEAEEAAAAAEAEEEAAEEAEEEAAE, which

has 16 alanines, i.e., n1 = 16; and 14 glutamic acids, i.e.,

n2 = 14. The composition of the two kind of amino acids is

C1 ¼ n1=ðn1 þ n2Þ ¼ 16=ð16þ 14Þ ¼ 0:5333; and mean-

while the C2 can be formulated as C2 ¼ n2=ðn1 þ n2Þ ¼
14=ð16þ 14Þ ¼ 0:4667; there are total 15 transitions from

A to E or from E to A in the sequence, that is

nxy þ nyx ¼ 15; thus, the percent frequency of these tran-

sitions is T = 15/(20–1) = 0.5172. The first, 25, 50, 75,

and 100 % of A are located in the first, 5-th, 12-th, 20-th,

and 29-th residue. The D descriptor for A is

1/30 = 0.0333, 5/30 = 0.1667, 12/30 = 0.4000,

20/30 = 0.6667, 29/30 = 0.9667. Similar, the D descriptor

for E is 0.0667, 0.2667, 0.6000, 0.7667, and 1.0000.

Overall, the amino acid composition descriptors for this

sequence are C = (0.5333,0.4667), T = (0.5172), and

D = (0.0333,0.1667,0.4000,0.6667,0.9667,0.0667,0.2667,

0.6000,0.7667,1.0000).

Table 2 Details of the

physiochemical descriptor
Physiochemical property Class one Class two Class three

Secondary structure

Solvent accessibility

Normalized van der Waals

volume

Hydrophobicity

Charge

Polarizability

Polarity

Surface accessibility

E,A,L,M,Q,K,R,H

A,L,F,C,G,I,V,W

G,A,S,T,P,D,C

R,K,E,D,Q,N

K,R

G,A,S,D,T

L,I,F,W,C,M,V,Y

G,Q,D,N,A,H,R

V,I,Y,C,W,F,T

P,K,Q,E,N,D

N,V,E,Q,I,L

G,A,S,T,P,H,Y

A,N,C,Q,G,H,I,L,M,F,P,S,T,W,Y,V

C,P,N,V,E,Q,I,L

P,A,T,G,S

K,T,S,E,C

G,N,P,S,D

M,R,S,T,H,Y

M,H,K,F,R,Y,W

C,L,V,I,M,F,W

D,E

K,M,H,F,R,Y,W

H,Q,R,K,N,E,D

I,L,M,F,P,W,Y,V
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Encoding Based On Grouped Weight (EBGW)

There existed a situation that is for some different things,

we can treat them as the one if they have some same fea-

tures. This is the concept of coarse-gained. According to

the charged and hydrophobicity character, the 20 native

amino acid residues can be divided into the following four

classes (Zhang et al. 2006):

Neutral and non-polarity residue CG1 = {A,F,G,I,L,M,P,V,W}

Neutral and polarity residue CG2 = {C,N,Q,S,T,Y}

Acidic residue CG3 = {D,E}

Basic residue CG4 = {H,K,R}

Thus, we will obtain three groups, one of which can

divide the 20 native amino acids into two disjoint combi-

nations: CG1?CG2 versus CG3?CG4, CG1?CG3 versus

CG2?CG4, and CG1?CG4 versus CG2?CG3.

For a protein sequence with L amino acid residues, it

can be expressed by

X ¼ x1x2. . .xL; ð15Þ

where x1 represents the first residue of the sequence, x2

represents the second residue, and so forth. Then, the

sequence can be transformed into three binary sequences

by three homomorphic maps

wiðXðLÞÞ ¼ wiðx1Þwiðx2Þ. . .wiðxLÞ i ¼ 1; 2; 3ð Þ, they can be

expressed as below:

w1ðxiÞ ¼
1 if xi 2 CG1 [ CG2

0 if xi 2 CG3 [ CG4

�
ði ¼ 1; 2; 3; . . .; LÞ

ð16Þ

w2ðxiÞ ¼
1 if xi 2 CG1 [ CG3

0 if xi 2 CG2 [ CG4

�
ði ¼ 1; 2; 3; . . .; LÞ

ð17Þ

w3ðxiÞ ¼
1 if xi 2 CG1 [ CG4

0 if xi 2 CG2 [ CG3

�
ði ¼ 1; 2; 3; . . .; LÞ

ð18Þ

Defined U Lð Þ j¼ w X Lð Þð Þ ¼ U
j
1;U

j
2; . . .;U j

L j ¼ 1; 2; 3ð Þ,
we called U(L)1, U(L)2, and U(L)3 as the 1-, 2- and 3-

characteristic sequences of the proteins, respectively.

For convenience, in the following section, we use

U(L) = U1, U2,…, UL as any character sequence of the

three defined above.

Let U(L) = U1, U2,…, UL be a character sequence, the

weight of U(L) can be defined as the number of occur-

rences of digit 1 in U(L). From the above, we can know that

the weight of sequences rely on the length of sequence.

Due to the length of sequences is different for different

protein sequences, to make sure the effectiveness of

features what we extract, we should make the weight

normal. It can be described as w(L) = v/L, where the v

represents the weight of U(L). For a character sequence

U(L) = U1, U2,…, UL, given a positive integer n, the

protein sequence can be divided into n subsequences. The

length of every subsequence is gradually increasing. The

subsequence of U(L) can be represented as U([K 9

L/n]) (k = 1,2,3,…,n), whose length is ([K 9 L/n]

(k = 1,2,3,…,n), in above expression, the symbol [.] rep-

resent the operation return the value which is down to the

nearest integer. The normalized weight of U([K 9 L/n])

(k = 1,2,3,…,n) can be written as w([K 9 L/n])

(k = 1,2,3,…,n). Thus, through the above processes, we

can obtain the EBGW string of a character sequence as the

following equation:

W ¼ ðw½L=n�;w½2� L=n�; . . .;w½n� L=n�Þ: ð19Þ

Therefore, for a given sequence X(L) = x1, x2,…, xL, we

can convert it into three character sequences, i.e.,

U(L) = U1, U2,…, UL. Thus, for a character sequence, we

can use L-dimension vector to represent it. A protein

sequence can be transformed into a 3L-dimension vector.

From above, we can see that the value of n is important to

the result. In this, by preliminary computation and analy-

ses, we find when n = 50, the best result would be

obtained, thus we can use 150 elements to represent a

protein sequence, it can be expressed as

EBGW ¼ ½f1f2. . .f150�T : ð20Þ

Combination all of the features aforementioned, it can be

formulated as

P ¼ ½w1;w2; . . .;w338�; ð21Þ

where the first 20 elements from AAC, w21;w22; . . .w188

from CTD, the rest elements from EBGW.

LIFT Classifier

In this study, the multi-label classifier called LIFT was used

to perform the prediction. The detailed description of how

the classifier works is clearly described in (Zhang 2011), and

hence, there is no need to repeat here. The predictor estab-

lished in this study has the ability to predict the functional

types of both singleplex and multiplex animal membrane

proteins. To provide an intuitive picture, a flowchart is pro-

vided in Fig. 1 to illustrate the prediction process.

Results and Discussion

In statistical prediction, it would be meaningless to simply

say a success rate of a predictor without considering what
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method and benchmark dataset were used to test its accu-

racy (Wu et al. 2012). As is well known, the following

three methods are often utilized to examine the quality of a

predictor: jackknife test, subsample test, and independent

dataset test. Among the three methods, the jackknife test,

also called Leave-One-Out (LOO) cross-validation, was

considered as the least arbitrary that can always yield a

unique result for a given benchmark dataset and hence has

been widely used by various investigators. Accordingly,

the jackknife test was also used in this study to evaluate the

power of the predictor.

However, even though using the jackknife test approach

for cross-validation, it still may generate obviously dif-

ferent success rates for a same predictor when tested by

different benchmark datasets. This is because the more

stringent of a benchmark dataset in excluding homologous

and high similarity sequences, the more difficult for a

predictor to achieve a high overall success rate. Mean-

while, the more number of subsets (functional types) a

benchmark dataset covered, the more difficult to achieve a

high overall success rate. This can be easily conceivable

via the following example. Assuming a benchmark dataset

consists of four subsets with each containing a same

number of protein sequences, the success rate would be

1/4 = 25 % by random guess, however, if the benchmark

dataset consists of eight subsets, and each of the subset has

the same proteins, the corresponding overall success rate

would be 1/8 = 12.5 %.

For such a complicated dataset containing both single-

plex and multiplex membrane proteins distributed among

eight functional types, this is the first try in predicting

animal membrane functional types, the result obtained are

listed in Table 3.

To provide a more intuitive and easier-to-understand

measurement, a new scale called absolute-true was intro-

duced to reflect the accuracy of the predictor, it can be

formulated as

Absolute�True ¼ 1

N

XN

i¼1

DðiÞ; ð22Þ

where N is the number of different virtual membrane

proteins, in here N ¼ 2559:

According to the above definition, we can see that if a

protein has three functional types, only two are correctly

predicted, or in fact the predicted result contains a type

not belongs to the three, the prediction score will be

counted as 0. In other words, when and only when all

types have been correctly predicted for a query protein,

the prediction score can be counted as 1. It is instructive

to point out that, for a multi-label system like this, the

absolute-true success rate for an individual membrane

protein functional type is meaningless and misleading.

Therefore, instead of the absolute-true success rate for

each of the individual functional types, the overall

absolute-true success rate achieved in this study is

0.6342, indicating that the predictor is a quite promising

multi-label predictor in identifying the functional types of

animal membrane proteins.

DðiÞ ¼ 1 if all the functional types of the ith membrane proteinis correctly predicted without any overprediction

0 otherwise

�

ð23Þ

Table 3 The result obtained in this study

Hamming

loss

One-error Coverage Ranking

loss

Average

precision

0.0632 0.2493 0.5979 0.0792 0.8443

Fig. 1 The flowchart to show the prediction process
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Conclusion

Membrane protein is a kind of important proteins in most

of the creatures. Though, there are many models have been

proposed in the past several years, it is still a challenging

task to predict the functional types of membrane proteins

with multiple membrane types.

In this study, a new model was proposed to predict

animal membrane proteins with single or multiple types.

From the result obtained listed in Table 3, we can see that

the new predictor holds very high potential to become a

useful high throughput tool for identifying animal mem-

brane protein functional type, we hope it will play an

important complementary role to the existing predictors in

this area. Though a promising result has obtained, there is

still much room for further improvement in future studies.

This is our direction of the research in the future.
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